Whole genome analysis for QTL/association enrichment
Running...
Version: Enrich S: beta v0.8
Data:
Number of pathogens and parasites traits:
8
Number of QTL / associations found:
86
Number of chromosomes where QTL / associations are found:
14
Chi-squared (χ2) test: are pathogens and parasites traits over-represented on some chromosomes?
Chromosomes
Total χ2
df
p-values
FDR *
Size of χ2
Chromosome 1
415.28240
13
1.318798e-80
1.846317e-79
Chromosome 2
44.67776
13
2.368162e-05
1.657713e-04
Chromosome 3
0.02656
13
0.998329325823115
9.999970e-01
Chromosome 6
12.86376
13
0.4583895
6.417453e-01
Chromosome 7
0.02656
13
0.998329325823115
9.999970e-01
Chromosome 8
34.44520
13
0.001029612
4.804856e-03
Chromosome 9
22.35216
13
0.0501398
1.002796e-01
Chromosome 10
22.35216
13
0.0501398
1.002796e-01
Chromosome 11
12.86376
13
0.4583895
6.417453e-01
Chromosome 13
30.72424
13
0.003698936
1.294628e-02
Chromosome 14
0.95680
13
0.999997
9.999970e-01
Chromosome 15
5.98008
13
0.946875
9.999970e-01
Chromosome 16
12.86376
13
0.4583895
6.417453e-01
Chromosome 18
22.35216
13
0.0501398
1.002796e-01
Chi-squared (χ2) test: Which of the 8 pathogens and parasites traits are over-represented in the QTLdb
Traits
Total χ2
df
p-values
FDR *
Size of χ2
Fecal egg count
34.09092
7
1.656275e-05
6.625100e-05
Parasite load
13.72222
7
0.05634834
9.015734e-02
Salmonella colonization
39.99999
7
1.258796e-06
1.007037e-05
Salmonella count in feces
20.66667
7
0.004296128
1.145634e-02
Salmonella count in liver
7.67539
7
0.3620858
3.620858e-01
Salmonella count in liver and spleen
11.26062
7
0.127648
1.458834e-01
Salmonella count in spleen
18.00388
7
0.01195251
2.390502e-02
Salmonella shedding status
11.49874
7
0.1182954
1.458834e-01
Correlations found between some of these traits for your reference
No correlation data found on these traits
Overall Test
Data
Chi'Square Test
Fisher's Exact Test
Number of chrom.:
14
χ2
=
637.767360
Number of traits:
8
df
=
91
Number of QTLs:
86
p-value
=
5.460529e-83
FOOT NOTE: * : FDR is short for "false
discovery rate", representing the expected proportion of type I errors. A type I
error is where you incorrectly reject the null hypothesis, i.e. you get a false
positive. It's statistical definition is FDR = E(V/R | R > 0) P(R > 0), where
V = Number of Type I errors (false positives); R = Number of rejected hypotheses.
Benjamini–Hochberg procedure is a practical way to estimate FDR.